86 research outputs found

    Richer lives: creative activities in the education and practice of Danish pedagogues: a preliminary study: report to Arts Council England

    Get PDF

    Analysis of MIMO Communications Systems Based on Experimentally Observed Channels

    Get PDF
    This thesis presents an analysis of multiple-input/multiple-output (MIMO) communications systems where the objective is to provide a unified solution to the problems of (i) crosstalk coupling in transmission line channels (ii) multi-path fading in the time variant high frequency wireless channel. In the case of transmission line channels, a comparative analysis is presented of the performance of MIMO communications systems based on balanced CAT 5 twisted-pair transmission lines, balanced twisted-pair telephone transmission lines scheme as well as unbalanced flat-pair transmission lines. The unbalanced flat-pair transmission lines are viewed as a model for digital subscriber lines (DSLs) which may be deemed out-of-range for high speed internet connections because of the circumstances of poor balance, high insertion losses and high degrees of crosstalk. This comparative analysis is then extended to examine effect of imperfect knowledge of the transmission line channels on MIMO communications system performance. In the case of wireless channels, an analysis is presented which investigates the effect of both the Rayleigh and Ricean channels on MIMO communications system performance. Again the analysis of the wireless channels is extended to examine the effect of imperfect knowledge of the channel on MIMO communications systems performance. All of the analyses in this work are based on experimentally observed channels. In the case of the transmission line channels, it is concluded that MIMO communications systems do offer the possibility of high speed internet connectivity on transmission lines that, hereto, would have been considered out-of-range for such services. Considering the CAT 5 transmission line channels, it is concluded that the MIMO communications system provide enhancement at frequencies above 50 MHz and therefore the possibly of extending length and coverage above the standard 100 metres is proposed. On the other hand, the improved performance of the twisted-pair telephone transmission lines is consistent over the range from 300 kHz to 100 MHz when the MIMO system is applied. For all the transmission line channels that are examined, the extent of imperfect knowledge of the channel that can be allowed while maintaining a reasonable MIMO communications system performance is indicated. In the case of the wireless channels, it is concluded that MIMO communications system performance is better in the case of Rayleigh channel than in the case of Ricean channel provided that the degree of correlation of the multi-path channel impulse response components is equivalent. Also, as the number of transmitters and receivers, N T, increases the effect of a given degree of imperfect knowledge of the wireless channel becomes more detrimental on MIMO communication system performance. This work thus indicates the extent of imperfect knowledge of the wireless channel that can be allowed while maintaining a reasonable MIMO communications system performance. The trade-off between increased capacity gain and decreased accuracy of knowledge of the channel as the dimension, N T, was increased is highlighted

    Crop Updates 2008 - Lupins, Pulses and Oilseeds

    Get PDF
    This session covers twenty six papers from different authors: Regional Roundup 1. SOUTH EAST AGRICULTURAL REGION, Mark Seymour Department of Agriculture and Food, and Robert Johnson CBH Group, Esperance 2. CENTRAL AGRICULTURAL REGION, Ian Pritchard, Department of Agriculture and Food 3. GREAT SOUTHERN AND LAKES REGION, Raj Malik, Department of Agriculture and Food 4. NORTHERN AGRICULTURAL REGION, Wayne Parker and Martin Harries, Department of Agriculture and Food LUPINS 5. Cropping lupins in wide rows in Western Australia, Martin Harries and Bob French, Department of Agriculture and Food 6. The effect of sowing time and radish density on lupin yield, Martin Harries and Jo Walker, Department of Agriculture and Food 7. Lupin agronomy affects crop competitiveness with annual ryegrass, Bob French and Laurie Maiolo, Department of Agriculture and Food 8. Identification of lupin mutants with tolerance to isoxaflutole, Leigh Smith, Department of Agriculture and Food PULSES 9. Chickpea 2007 Crop Variety Testing (CVT) and National Variety Testing (NVT), Alan Harris, Rod Hunter, Tanveer Khan and Jenny Garlinge, Department of Agriculture and Food 10. Desi chickpea breeding: Evaluation of advanced lines, Tanveer Khan1, Poran Gaur2, Kadambot Siddique3, Heather Clarke4, Neil Turner4, William MacLeod4, Stuart Morgan1, Alan Harris1, 1Department of Agriculture and Food, 2International Crop Research Institute for the Semi Arid Tropics (ICRISAT); 3The University of Western Australia; 4Centre for Legumes in Mediterranean Agriculture 11. Can wide rows buffer chickpea growth against dry environments? Bob French and Wendy Vance, Department of Agriculture and Food, and School of Environmental Sciences, Murdoch University 12. Field pea 2007 Crop Variety Testing (CVT) and National Variety Testing (NVT), Alan Harris, Rod Hunter, Tanveer Khan and Jenny Garlinge, Department of Agriculture and Food 13. Australian Field Pea improvement Program (AFPIP): Evaluation of advanced breeding lines, Tanveer Khan1, Phillip Chambers1, Chris Veitch1, Stuart Morgan1, Alan Harris1, and Tony Leonforte 2, 1Department of Agriculture and Food, 2Department of Primary Industries, Victoria 14. Ability of semi-leafless field peas to recover after rolling, Mark Seymour and Rodger Beermier, Department of Agriculture and Food 15. Field pea germplasm enhancement for black spot resistance, Tanveer Khan, Stuart Morgan, Alan Harris and Phillip Chambers, Department of Agriculture and Food 16. Application of ‘Blackspot Manager’ model to identifying a low risk sowing date for field pea in South Australia and Western Australia in 2007, Moin Salam1, Jenny Davidson2, Jean Galloway1, Pip Payne2, Tess Humphries2, Bill MacLeod1 and Art Diggle1, 1Department of Agriculture and Food, 2SARDI, South Australia 17. Late post emergent herbicide sprays for field pea, Mark Seymour and Rodger Beermier, Department of Agriculture and Food 18. Adding triasulfuron to croptopping mixes does not affect the yield of field pea, Mark Seymour, Department of Agriculture and Food 18. Herbicide tolerance of field pea varieties, Harmohinder Dhammu and Mark Seymour, Department of Agriculture and Food 19. Breeding highlights of the PBA lentil program, Michael Materne1, Kerry Regan2, Chris Veitch2 and Phil Chambers2, 1Department of Primary Industries, Victoria 2Department of Agriculture and Food CANOLA 20. How late can I sow canola in 2008? Mohammad Amjad, Andy Sutherland and Pat Fels, Department of Agriculture and Food 21. Direct harvesting canola, Glen Riethmuller1, Wallace Cowling2, Milton Sanders2, Eliot Jones2 and Chris Newman1, 1Department of Agriculture and Food, Western Australia, 2Canola Breeders Western Australia Pty Ltd 22. Agronomic performance of new hybrid canola and juncea canola in low, medium and high rainfall environments of Western Australia, Mohammad Amjad, Andy Sutherland and Pat Fels, Department of Agriculture and Food 23. Comparative performance of new canola varieties in commercial-scale field trials of Oilseeds WA – 2007, Mohammad Amjad1, John Duff2 and David Sermon3 1Department of Agriculture and Food, 2Oilseeds Western Australia and John Duff & Associates, Perth; 3ConsultAg, Perth 24. The effect of rotation crops, trash retention and prophylactic sprays on arthropod abundance in a following canola crop, Svetlana Micic, Anthony Dore and Geoff Strickland, Department of Agriculture and Food OATS 25. Fungicide options for controlling disease in oats, Raj Malik and Blakely Paynter, Department of Agriculture and Food 26. Herbicide tolerance of new oat varieties, Harmohinder Dhammu, Vince Lambert and Chris Roberts, Department of Agriculture and Foo

    Crop Updates 2007 - Lupins, Pulses and Oilseeds

    Get PDF
    This session covers forty eight papers from different authors: 2006 REGIONAL ROUNDUP 1. South east agricultural region, Mark Seymour1 and Jacinta Falconer2, 1Department of Agriculture and Food, 2Cooperative Bulk Handling Group 2. Central agricultural region, Ian Pritchard, Department of Agriculture and Food 3. Great Southern and Lakes region, Rodger Beermier, Department of Agriculture and Food 4. Northern agricultural region, Wayne Parker and Martin Harries, Department of Agriculture and Food LUPINS 5. Development of anthracnose resistant and early flowering albus lupins (Lupinus albus L) in Western Australia, Kedar Adhikari and Geoff Thomas, Department of Agriculture and Food 6. New lupins adapted to the south coast, Peter White, Bevan Buirchell and Mike Baker, Department of Agriculture and Food 7. Lupin species and row spacing interactions by environment, Martin Harries, Peter White, Bob French, Jo Walker, Mike Baker and Laurie Maiolo, Department of Agriculture and Food 8. The interaction of lupin species row spacing and soil type, Martin Harries, Bob French, Laurie Maiolo and Jo Walker, Department of Agriculture and Food 9. The effects of row spacing and crop density on competitiveness of lupins with wild radish, Bob French and Laurie Maiolo, Department of Agriculture and Food 10. The effect of time of sowing and radish weed density on lupin yield, Martin Harries and Jo Walker, Department of Agriculture and Food 11. Interaction of time of sowing and weed management in lupins, Martin Harries and Jo Walker, Department of Agriculture and Food 12. Delayed sowing as a strategy to manage annual ryegrass, Bob French and Laurie Maiolo, Department of Agriculture and Food 13. Is delayed sowing a good strategy for weed management in lupins? Bob French, Department of Agriculture and Food 14. Lupins aren’t lupins when it comes to simazine, Peter White and Leigh Smith, Department of Agriculture and Food 15. Seed yield and anthracnose resistance of Tanjil mutants tolerant to metribuzin, Ping Si1, Bevan Buirchell1,2 and Mark Sweetingham1,2, 1Centre for Legumes in Mediterranean Agriculture, Australia; 2Department of Agriculture and Food 16. The effect of herbicides on nodulation in lupins, Lorne Mills1, Harmohinder Dhammu2 and Beng Tan1, 1Curtin University of Technology and 2Department of Agriculture and Food 17. Effect of fertiliser placements and watering regimes on lupin growth and seed yield in the central grain belt of Western Australia, Qifu Ma1, Zed Rengel1, Bill Bowden2, Ross Brennan2, Reg Lunt2 and Tim Hilder2, 1Soil Science & Plant Nutrition UWA, 2Department of Agriculture and Food 18. Development of a forecasting model for Bean Yellow Mosaic Virus in lupins, T. Maling1,2, A. Diggle1, D. Thackray1,2, R.A.C. Jones2, and K.H.M. Siddique1, 1Centre for Legumes in Mediterranean Agriculture, The University of Western Australia; 2Department of Agriculture and Food 19. Manufacturing of lupin tempe,Vijay Jayasena1,4, Leonardus Kardono2,4, Ken Quail3,4 and Ranil Coorey1,4, 1Curtin University of Technology, Perth, Australia, 2Indonesian Institute of Sciences (LIPI), Indonesia, 3BRI Australia Ltd, Sydney, Australia, 4Grain Foods CRC, Sydney, Australia 20. The impact of lupin based ingredients in ice-cream, Hannah Williams, Lee Sheer Yap and Vijay Jayasena, Curtin University of Technology, Perth WA 21. The acceptability of muffins substituted with varying concentrations of lupin flour, Anthony James, Don Elani Jayawardena and Vijay Jayasena, Curtin University of Technology, PerthWA PULSES 22. Chickpea variety evaluation, Kerry Regan1, Rod Hunter1, Tanveer Khan1,2and Jenny Garlinge1, 1Department of Agriculture and Food, 2CLIMA, The University of Western Australia 23. Advanced breeding trials of desi chickpea, Khan, T.N.1, Siddique, K.H.M.3, Clarke, H.2, Turner, N.C.2, MacLeod, W.1, Morgan, S.1, and Harris, A.1, 1Department of Agriculture and Food, 2Centre for Legumes in Mediterranean Agriculture, 3TheUniversity of Western Australia 24. Ascochyta resistance in chickpea lines in Crop Variety Testing (CVT) of 2006, Tanveer Khan1 2, Bill MacLeod1, Alan Harris1, Stuart Morgan1and Kerry Regan1, 1Department of Agriculture and Food, 2CLIMA, The University of Western Australia 25. Yield evaluation of ascochyta blight resistant Kabuli chickpeas, Kerry Regan1and Kadambot Siddique2, 1Department of Agriculture and Food, 2Institute of Agriculture, The University of Western Australia 26. Pulse WA Chickpea Industry Survey 2006, Mark Seymour1, Ian Pritchard1, Wayne Parker1and Alan Meldrum2, 1Department of Agriculture and Food, 2Pulse Australia 27. Genes from the wild as a valuable genetic resource for chickpea improvement, Heather Clarke1, Helen Bowers1and Kadambot Siddique2, 1Centre for Legumes in Mediterranean Agriculture, 2Institute of Agriculture, The University of Western Australia 28. International screening of chickpea for resistance to Botrytis grey mould, B. MacLeod1, Dr T. Khan1, Prof. K.H.M. Siddique2and Dr A. Bakr3, 1Department of Agriculture and Food, 2The University of Western Australia, 3Bangladesh Agricultural Research Institute 29. Balance® in chickpea is safest applied post sowing to a level seed bed, Wayne Parker, Department of Agriculture and Food, 30. Demonstrations of Genesis 510 chickpea, Wayne Parker, Department of Agriculture and Food 31. Field pea 2006, Ian Pritchard, Department of Agriculture and Food 32. Field pea variety evaluation, Kerry Regan1, Rod Hunter1, Tanveer Khan1,2 and Jenny Garlinge1, 1Department of Agriculture and Food, 2CLIMA, The University of Western Australia 33. Breeding highlights of the Australian Field Pea Improvement Program (AFPIP),Kerry Regan1, Tanveer Khan1,2, Phillip Chambers1, Chris Veitch1, Stuart Morgan1 , Alan Harris1and Tony Leonforte3, 1Department of Agriculture and Food, 2CLIMA, The University of Western Australia, 3Department of Primary Industries, Victoria 34. Field pea germplasm enhancement for black spot resistance, Tanveer Khan, Kerry Regan, Stuart Morgan, Alan Harris and Phillip Chambers, Department of Agriculture and Food 35. Validation of Blackspot spore release model and testing moderately resistant field pea line, Mark Seymour, Ian Pritchard, Rodger Beermier, Pam Burgess and Leanne Young, Department of Agriculture and Food 36. Yield losses from sowing field pea seed infected with Pea Seed-borne Mosaic Virus, Brenda Coutts, Donna O’Keefe, Rhonda Pearce, Monica Kehoe and Roger Jones, Department of Agriculture and Food 37. Faba bean in 2006, Mark Seymour, Department of Agriculture and Food 38. Germplasm evaluation – faba bean, Mark Seymour1, Terri Jasper1, Ian Pritchard1, Mike Baker1 and Tim Pope1,2, 1Department of Agriculture and Food, , 2CLIMA, The University of Western Australia 39. Breeding highlights of the Coordinated Improvement Program for Australian Lentils (CIPAL), Kerry Regan1, Chris Veitch1, Phillip Chambers1 and Michael Materne2, 1Department of Agriculture and Food, 2Department of Primary Industries, Victoria 40. Screening pulse lentil germplasm for tolerance to alternate herbicides, Ping Si1, Mike Walsh2 and Mark Sweetingham1,3, 1Centre for Legumes in Mediterranean Agriculture, 2West Australian Herbicide Resistance Initiative, 3Department of Agriculture and Food 41. Genomic synteny in legumes: Application to crop breeding, Phan, H.T.T.1, Ellwood, S.R.1, Hane, J.1, Williams, A.1, Ford, R.2, Thomas, S.3 and Oliver R1, 1Australian Centre of Necrotrophic Plant Pathogens, Murdoch University, 2BioMarka, University of Melbourne, 3NSW Department of Primary Industries 42. Tolerance of lupins, chickpeas and canola to Balanceâ(Isoxaflutole) and Galleryâ (Isoxaben), Leigh Smith and Peter White, Department of Agriculture and Food CANOLA AND OILSEEDS 43. The performance of TT Canola varieties in the National Variety Test (NVT),WA,2006,Katie Robinson, Research Agronomist, Agritech Crop Research 44. Evaluation of Brassica crops for biodiesel in Western Australia, Mohammad Amjad, Graham Walton, Pat Fels and Andy Sutherland, Department of Agriculture and Food 45. Production risk of canola in different rainfall zones in Western Australia, Imma Farré1, Michael Robertson2 and Senthold Asseng3, 1Department of Agriculture and Food, 2CSIRO Sustainable Ecosystems, 3CSIRO Plant Industry 46. Future directions of blackleg management – dynamics of blackleg susceptibility in canola varieties, Ravjit Khangura, Moin Salam and Bill MacLeod, Department of Agriculture and Food 47. Appendix 1: Contributors 48. Appendix 2: List of common acronym

    Allele-Specific HLA Loss and Immune Escape in Lung Cancer Evolution

    Get PDF
    Immune evasion is a hallmark of cancer. Losing the ability to present neoantigens through human leukocyte antigen (HLA) loss may facilitate immune evasion. However, the polymorphic nature of the locus has precluded accurate HLA copy-number analysis. Here, we present loss of heterozygosity in human leukocyte antigen (LOHHLA), a computational tool to determine HLA allele-specific copy number from sequencing data. Using LOHHLA, we find that HLA LOH occurs in 40% of non-small-cell lung cancers (NSCLCs) and is associated with a high subclonal neoantigen burden, APOBEC-mediated mutagenesis, upregulation of cytolytic activity, and PD-L1 positivity. The focal nature of HLA LOH alterations, their subclonal frequencies, enrichment in metastatic sites, and occurrence as parallel events suggests that HLA LOH is an immune escape mechanism that is subject to strong microenvironmental selection pressures later in tumor evolution. Characterizing HLA LOH with LOHHLA refines neoantigen prediction and may have implications for our understanding of resistance mechanisms and immunotherapeutic approaches targeting neoantigens. Video Abstract [Figure presented] Development of the bioinformatics tool LOHHLA allows precise measurement of allele-specific HLA copy number, improves the accuracy in neoantigen prediction, and uncovers insights into how immune escape contributes to tumor evolution in non-small-cell lung cancer

    From Sacred to Scientific: Epic Religion, Spectacular Science, and Charlton Heston’s Science Fiction Cinema

    Get PDF
    This paper analyses how long-1960s cinema responded to and framed public discourses surrounding religion and science. This approach allows for a discussion that extends beyond a critical study of the scholarly debates that surround the place of religion in science during a transitional period. Charlton Heston was an epic actor who went from literally playing God in The Ten Commandments (1956) to playing “god” as a messianic scientist in The Omega Man (1971). Best known for playing Moses, Heston became an unlikely science-based cinema star during the early 1970s. He was re-imagined as a scientist, but the religiosity of his established persona was inescapable. Heston and the science-based films he starred in capitalized upon the utopian promises of real science, and also the fears of the vocal activist counterculture. Planet of the Apes (1968), Omega Man (1971), Soylent Green (1973), and other science-based films made between 1968-1977 were bleak countercultural warnings about excessive consumerism, uncontrolled science, nuclear armament, irreversible environmental damage, and eventual human extinction. In this paper I argue that Heston’s transition from biblical epic star to science-fiction anti-hero represents the way in which the role and interpretation of science changed in post-classical cinema. Despite the shift from religious epic to science-based spectacle, religion remained a faithful component of Hollywood output indicating the ongoing connection between science and religion in US culture. I will consider the transition from sacred to science-based narratives and how religion was utilised across the production process of films that commented upon scientific advances

    Fc-Optimized Anti-CD25 Depletes Tumor-Infiltrating Regulatory T Cells and Synergizes with PD-1 Blockade to Eradicate Established Tumors

    Get PDF
    CD25 is expressed at high levels on regulatory T (Treg) cells and was initially proposed as a target for cancer immunotherapy. However, anti-CD25 antibodies have displayed limited activity against established tumors. We demonstrated that CD25 expression is largely restricted to tumor-infiltrating Treg cells in mice and humans. While existing anti-CD25 antibodies were observed to deplete Treg cells in the periphery, upregulation of the inhibitory Fc gamma receptor (FcγR) IIb at the tumor site prevented intra-tumoral Treg cell depletion, which may underlie the lack of anti-tumor activity previously observed in pre-clinical models. Use of an anti-CD25 antibody with enhanced binding to activating FcγRs led to effective depletion of tumor-infiltrating Treg cells, increased effector to Treg cell ratios, and improved control of established tumors. Combination with anti-programmed cell death protein-1 antibodies promoted complete tumor rejection, demonstrating the relevance of CD25 as a therapeutic target and promising substrate for future combination approaches in immune-oncology

    Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution.

    Get PDF
    The early detection of relapse following primary surgery for non-small-cell lung cancer and the characterization of emerging subclones, which seed metastatic sites, might offer new therapeutic approaches for limiting tumour recurrence. The ability to track the evolutionary dynamics of early-stage lung cancer non-invasively in circulating tumour DNA (ctDNA) has not yet been demonstrated. Here we use a tumour-specific phylogenetic approach to profile the ctDNA of the first 100 TRACERx (Tracking Non-Small-Cell Lung Cancer Evolution Through Therapy (Rx)) study participants, including one patient who was also recruited to the PEACE (Posthumous Evaluation of Advanced Cancer Environment) post-mortem study. We identify independent predictors of ctDNA release and analyse the tumour-volume detection limit. Through blinded profiling of postoperative plasma, we observe evidence of adjuvant chemotherapy resistance and identify patients who are very likely to experience recurrence of their lung cancer. Finally, we show that phylogenetic ctDNA profiling tracks the subclonal nature of lung cancer relapse and metastasis, providing a new approach for ctDNA-driven therapeutic studies
    corecore